Molecular simulation studies on the thermophysical properties of fluoropropene refrigerants and their mixtures

Gabriele Raabe
University of Braunschweig, Institute of Technology, IfT

Thermophysical Properties for Technical Thermodynamics, Rostock, 2013
Molecular simulation studies on fluoropropene refrigerants

Motivation

• Different fluoropropenes are currently considered as refrigerants, either as pure compounds or as components in low GWP refrigerant mixtures

• The lack of experimental data for the pure compounds and their mixtures hampers studies on their performance in technical applications

⇒ Development of a force field model for reliable predictions of their thermophysical properties by molecular simulation studies to complement experimental data.
Molecular simulation studies on fluoropropene refrigerants

Force Field Development

- fully flexible all-atoms ‘class 1’ force field

\[
U_{\text{conf}} = \sum_{i=1}^{N-1} \sum_{j>i}^{N} \left\{ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} \right\} + \sum_{\text{bonds}} k_r (r - r_0)^2 + \sum_{\text{angles}} k_\theta (\theta - \theta_0)^2 + \sum_{\text{dihedral}} k_\chi [1 + \cos (n\chi - \delta)]
\]

- transferable parameters (Lennard-Jones (LJ), intramolecular terms)
Molecular simulation studies on fluoropropene refrigerants

Force Field Development

Compounds directly considered at the moment:

- HFO-1234yf
- HFO-1234ze(E)
- HFO-1234ze
- HFO-1243zf
- HFO-1216
- HFO-1225ye(Z)
Molecular simulation studies on fluoropropene refrigerants

Force Field Development

- nominal bond lengths r_0 and bond angles θ_0 from ab initio optimizations (DFT: B3LYP/DGDZVP)
- force constants k_r, k_{θ} and k_{χ} from ab initio optimizations for perturbated geometries
- ab initio CHELPG charges q_i (HF/6-31G*)
- LJ parameters ε_{ii}, σ_{ii} adjusted to fine-tune agreement with experimental data:
 - CM, FCM: ΔH_{vap}, p_s of C_2F_4
 - HC, H1: AMBER parameter
 - CT, FCT: ρ_l, p_s of HFO-1234yf, HFO-1243zf
 - FCMh: ρ_l, p_s of HFO-1225ye(Z)
Validation of the Force Field
by Gibbs ensemble (GEMC) simulations on the VLE of the different pure compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>T_c, sim (K)</th>
<th>T_c, exp (K)</th>
<th>ρ_c, sim (kg m$^{-3}$)</th>
<th>ρ_c, exp (kg m$^{-3}$)</th>
<th>p_c, sim (MPa)</th>
<th>p_c, exp (MPa)</th>
<th>T_b, sim (K)</th>
<th>T_b, exp (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFO-1234yf</td>
<td>366.6 ± 9.5</td>
<td>367.9</td>
<td>470 ± 26</td>
<td>478</td>
<td>3.38 ± 0.73</td>
<td>3.26-3.38</td>
<td>243.3 ± 3.5</td>
<td>243.8</td>
</tr>
<tr>
<td>HFO-1243zf</td>
<td>375.5 ± 14.5</td>
<td>376.2-380.8</td>
<td>422 ± 40</td>
<td>455.22-462.2</td>
<td>3.56 ± 1.1</td>
<td>3.61-3.79</td>
<td>250.1 ± 4.3</td>
<td>249.3</td>
</tr>
<tr>
<td>HFO-1216</td>
<td>364.3 ± 13.2</td>
<td>358.93</td>
<td>590 ± 49</td>
<td>579.03</td>
<td>3.34 ± 1.13</td>
<td>3.136</td>
<td>242.4 ± 6.6</td>
<td>243.6</td>
</tr>
<tr>
<td>HFO-1234ze(E)</td>
<td>381.4 ± 10.7</td>
<td>382.51</td>
<td>487 ± 29</td>
<td>486</td>
<td>3.87 ± 0.86</td>
<td>3.632</td>
<td>254.9 ± 2.3</td>
<td>254.15</td>
</tr>
<tr>
<td>HFO-1225ye(Z)</td>
<td>381.6 ± 15.7</td>
<td>378.2</td>
<td>534 ± 43</td>
<td>527</td>
<td>3.67 ± 1.15</td>
<td>3.183</td>
<td>254.2 ± 3.1</td>
<td>253.5</td>
</tr>
</tbody>
</table>

Molecular simulation studies on fluoropropene refrigerants
Validation of the Force Field

GEMC simulation results for the VLE of HFO-1234yf

The simulated saturated densities \((\rho^L, \rho^V)\) and vapor pressures \((p_s)\) agree with the experimental data within their error bars.

Molecular simulation studies on fluoropropene refrigerants

Application to HFO-1234ze(E) and HFO-1234ze

Only with individual q_i, but no adjusted LJ parameters

HFO-1234ze(E)

$T_b^{\text{exp}} = 254.15$ K

$T_b^{\text{sim}} = (254.9 \pm 2.3)$ K

HFO-1234ze

$T_b^{\text{exp}} = 282.15$ K

$T_b^{\text{sim}} = (283.6 \pm 3.5)$ K
Molecular simulation studies on fluoropropene refrigerants

GEMC results for HFO-1225ye(Z) and HFO-1216
Modified FCMh parameter required for fluoropropenes with > 4 fluorine atoms, adjusted to exp. data for HFO-1225ye(Z)

Good reproduction of the VLE of HFO-1216 using the same LJ parameters attests the good transferability of the force field

Molecular simulation studies on fluoropropene refrigerants

Prediction of other thermophysical properties
e.g. liquid densities $\rho(T)$ and viscosities $\eta(T)$ at $p = 2$ MPa

Force field also enables reliable predictions for properties not included in its parameterization.
Predictions for the VLE of refrigerant blends with R-32
Binary mixtures R-32 + R-1234yf and R-32 + R-1234ze(E) as candidates to replace R-410A in domestic heat pump and air conditioning systems
⇒ New flexible all atoms model for R-32, compatible with fluoropropene force field
Molecular simulation studies on fluoropropene refrigerants

Predictions for the VLE of refrigerant blends with R-32

- GEMC simulations for R-32 + R-1234yf / R-1234ze(E) with new R-32 model and Lorentz-Berthelot combining rule
- no adjusted interaction parameters in GEMC simulations
Molecular simulation studies on fluoropropene refrigerants

Predictions for the VLE of binary mixture with CO$_2$

GEMC simulations for CO$_2$ + R-1234yf / R-1234ze(E)

- TraPPE CO$_2$ model and Lorentz-Berthelot combing rule
- no adjusted interaction parameters in GEMC simulations

interaction parameters in REFPROP 9.1
fitted to GEMC simulation results for VLE
Molecular simulation studies on fluoropropene refrigerants

MD simulations on CO$_2$ + R-1234yf / R-1234ze(E) mixtures

Prediction of thermophysical properties in the liquid phase, e.g. densities $\rho(T, x_{CO_2})$ and viscosities $\eta(T, x_{CO_2})$ at $p = 3.5$ MPa
Simulation studies on the new MAC refrigerant AC-6

AC-6: 6% CO$_2$ + 9% R-134a + 85% R-1234ze(E) (by mass)

- R-1234ze(E) this work + TraPPE CO$_2$ model, as before
- R-134a model by Peguin et al.
- no adjusted ε_{ij} or σ_{ij}

\Rightarrow tested for CO$_2$ + R-134a
Molecular simulation studies on fluoropropene refrigerants

Simulation studies on the MAC refrigerant AC-6 (R-445A)

Liquid phase properties

\[T = 315 \text{ K}, \ p = 1.6 \text{ MPa} : \]
\[\rho = (1099.6 \pm 16.7) \frac{kg}{m^3} \]
\[\eta = (0.147 \pm 0.012) \text{ mPas} \]

\[T = 300 \text{ K}, \ p = 1.6 \text{ MPa} : \]
\[\rho = (1158.6 \pm 13.4) \frac{kg}{m^3} \]
\[\eta = (0.181 \pm 0.013) \text{ mPas} \]

VLE properties

\[T = 320 \text{ K}, \ p = 1.68 \text{ MPa} : \]
\[x_1' = 0.119, \ x_2' = 0.092 (\pm 0.006) \]
\[x_1'' = 0.383, \ x_2'' = 0.082 (\pm 0.004) \]
\[\rho' = (1076.0 \pm 7.0) \text{ kg m}^{-3} \]
\[\rho'' = (67.3 \pm 2.0) \text{ kg m}^{-3} \]

\[T = 278 \text{ K}, \ p = 0.35 \text{ MPa} : \]
\[x_1' = 0.028, \ x_2' = 0.081 (\pm 0.004) \]
\[x_1'' = 0.215, \ x_2'' = 0.096 (\pm 0.007) \]
\[\rho' = (1246.0 \pm 8.1) \text{ kg m}^{-3} \]
\[\rho'' = (15.9 \pm 0.1) \text{ kg m}^{-3} \]
Conclusion

- transferable force field for the fluoropropenes HFO-1234yf, -1234ze(E), -1234ze, -1243zf, -1225ye(Z), -1216
- validation of the force field by GEMC simulations on the VLE properties of the different pure compounds
- also yields reliable predictions for thermophysical properties not used in parameterization
- enables studies on mixtures without adjusted interaction parameters
- application for simulation studies on refrigerant blends of R-1234yf and R-1234ze(E) with R-32 and CO₂, and on AC-6 (CO₂ + R-134a + R-1234ze(E) = R-445A)
Molecular simulation studies on fluoropropene refrigerants

Acknowledgement

• DFG for the Research Fellowship (RA 946/2-1)
• Prof. Edward Maginn and his group @ ND
• Dr. Eric Lemmon @ NIST, Boulder for fitting binary interaction parameters for REFPROP 9.1 to GEMC simulation results for CO$_2$ + R-1234yf and CO$_2$ + R-1234ze(E)

Thank You!